Multilayer Perceptron Algebra
نویسنده
چکیده
Artificial Neural Networks(ANN) has been phenomenally successful on various pattern recognition tasks. However, the design of neural networks rely heavily on the experience and intuitions of individual developers. In this article, the author introduces a mathematical structure called MLP algebra on the set of all Multilayer Perceptron Neural Networks(MLP), which can serve as a guiding principle to build MLPs accommodating to the particular data sets, and to build complex MLPs from simpler ones.
منابع مشابه
A theory of neural computation with Clifford algebras
The present thesis introduces Clifford Algebra as a framework for neural computation. Clifford Algebra subsumes, for example, the reals, complex numbers and quaternions. Neural computation with Clifford algebras is model–based. This principle is established by constructing Clifford algebras from quadratic spaces. Then the subspace grading inherent to any Clifford algebra is introduced, which al...
متن کاملDirect Encoding Evolutionary Learning Algorithm for Multilayer Morphological Perceptron
This paper presents a method based on evolutionary computation to train multilayer morphological perceptron (MLMP). The algorithm calculates network parameters such as its connection weights, pre-synaptic and postsynaptic values for a given network topology. Morphological perceptron are a new type of feed-forward artificial neural network based on lattice algebra which can be used for pattern c...
متن کاملA Learning Classifier Approach to Tomography
Tomography is an important technique for noninvasive imaging: images of the interior of an object are computed from several scanned projections of the object, covering a range of angles. Traditionally, tomographic reconstruction algorithms have been based on techniques from analysis and linear algebra. In this paper we describe how a particular version of the tomographic reconstruction problem,...
متن کاملSizing of the Multilayer Perceptron via Modular Networks
A fast method for sizing the multilayer perceptron is proposed. The principal assumption is that a modular network with the same theoretical pattern storage as the multilayer perceptron has the same training error. This assumption is analyzed for the case of random patterns. Using several benchmark datasets, the validity of the approach is demonstrated.
متن کاملOptimal Learning Rates for Clifford Neurons
Neural computation in Clifford algebras, which include familiar complex numbers and quaternions as special cases, has recently become an active research field. As always, neurons are the atoms of computation. The paper provides a general notion for the Hessian matrix of Clifford neurons of an arbitrary algebra. This new result on the dynamics of Clifford neurons then allows the computation of o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1701.04968 شماره
صفحات -
تاریخ انتشار 2017